Update of the Heat Flow Database in Türkiye (https://doi.org/10.5880/GFZ.4.8.2024.001)

Elif Balkan-Pazvantoğlu^{1,2}, Florian Neumann¹, Ben Norden¹, Sven Fuchs¹

- 1. Section 4.8 Geoenergy, GFZ German Research Centre for Geosciences, Potsdam, Germany
- 2. Department of Geophysical Engineering, Dokuz Eylül University, İzmir, Turkey

1. Licence

Creative Commons Attribution 4.0 International License (CC BY 4.0)

2. Citation

When using the data please cite:

Balkan-Pazvantoğlu, Elif; Neumann, Florian; Norden, Ben; Fuchs, Sven (2023): Updated Mexican and surrounding areas Heat Flow Database 2023. GFZ Data Services. https://doi.org/10.5880/GFZ.4.8.2024.001

Table of contents

1.	Licence	1
	Citation	
	ole of contents	
	Data Description	
	File description	
	4.1. Description of data tables	
	Database	
6.	References	7
7.	Database References	7

3. Data Description

The Turkey heat flow database includes several research articles obtained from the catalogue of The Global Heat Flow Data Assessment Project conducted by the International Heat Flow Commission (IHFC; www.ihfc-iugg.org). The presented database contains 725 heat-flow determinations compiled from 9 different publications generated between 1991-2023 reported within Turkey. For the reporting and sorting of the database, the structure documented by Fuchs et al. (2023) is followed. Within this dataset, 98% of the entries represent continental heat-flow data (onshore), while the remaining 2% correspond to marine data (offshore). 88% of the reported heat flow values were obtained via direct temperature measurements, while the remaining data (12%) were estimated from indirect Curie depth temperature calculations.

4. File description

The short name of the columns used in the heat flow database and their description are provided in Table 1.

4.1.Description of data tables

Table 1: Description of the column headers in Balkan-Pazvantoglu-et-al_HeatFlow_2023.xlsx

P01	Heat-flow value	q	mW/m²	Float (1 decimal place)	М	Р	B,S	Terrestrial surface heat-flow value (q) for the location after all corrections for instrumental and environmental effects.
P02	Heat-flow uncertainty	q_uncertainty	mW/m²	Float (1 decimal place)	R	Р	B,S	Uncertainty of the location heat- flow value [q] estimated by error propagation from the uncertainties [qc_uncertainty] of the relevant child [relevant_child] heat flow values [qc]
P03	Site name	name	-	Char (255)	M	Р	B,S	Specification of the (local) name of the related heat-flow site or the related survey. Should be consistent with the publication.
P04	Geographical latitude	lat	deg	Float (5 decimal places)	М	Р	B,S	Latitude (lat) is a geographic coordinate that specifies the North–South position of a point on the planetary's surface. The Equator has a latitude of 0°, the North Pole has a latitude of 90° North (written +90), and the South Pole has a latitude of 90° South (written -90). Numeric values (2 digits) with 5 decimal places are used for this database item instead of the N or S format (e.g., -80.00000 instead of 80° S).
P05	Geographical longitude	long	deg	Float (5 decimal places)	М	Р	B,S	Longitude (long) is a geographic coordinate that specifies the east—west position of a point on the Earth's planetary surface. The Prime Meridian, which passes near the Royal Observatory, Greenwich, England, is defined as 0° longitude by convention. Positive longitudes are east of the Prime Meridian, and negative ones are west. Numeric values (3 digits) with 5 decimal places
P06	Geographical elevation	elevation	m	float (2 decimal places)	R	Р	B,S	The elevation of a geographic location is its height above or below mean sea level. Caution: different national reference systems are used. Also the reference level may be diverse depending on the study (drilling, lake, marine).
P07	Basic geographical environment	environment	-	Char (255)	M	Р	B,S	Describes the general geographical setting of the heat-flow site (not the applied methodology).
P08	General comments parent level	p_comment	-	Char (255)	R	Р	B,S	Comments to the reported heat- flow location value.
P09	Flag heat production of theoverburden (heat-flow correction)	corr_HP_flag	-	BIT field	R	Р	B,S	Specifies if corrections to the calculated heat flow considers the contribution of the heat production of the overburden to the terrestrial surface heat flow q.

P10	Total Measured Depth	total_depth_MD	m	float (2 decimal places)	R	Р	В	Specification of the the total depth. Caution: different national reference systems are used. Also the reference level may be diverse depending on the study (drilling, lake, marine).
P11	Total True Vertical Depth	total_depth_TVD	m	float (2 decimal places)	R	Р	В	Specification of the the total drilling depth below mean sea level. Caution: different national reference systems are used. Also the reference level may be diverse depending on the study (drilling, lake, marine).
P12	Type of exploration method	explo_method	-	Char (255)	М	Р	В	Specification of the general means by which the rock was accessed by temperature sensors for the respective data entry.
P13	Original exploration purpose	explo_purpose	-	Char (255)	R	Р	В	Main purpose of the reconnaissance target providing access for the temperature sensors.
C01	Heat-flow value child	qc	mW/m²	Float (1 decimal place)	М	С	B,S	Any kind of heat-flow value (qc).
C02	Heat-flow uncertainty child	qc_uncertainty	mW/m²	Float (1 decimal place)	R	С	B,S	Uncertainty standard deviation of the reported heat-flow value [qc] as estimated by an error propagation from uncertainty in thermal conductivity and temperature gradient or deviation from the linear regression of the Bullard plot (corrected preferred over measured gradient).
C03	Heat-flow method	q_method	-	Char (255)	М	С	B,S	Principal method of heat-flow density calculation from temperature and thermal conductivity data. Allowed entries: controlled vocabulary
C04	Heat-flow interval top	q_top	m	Float (2 decimal places)	М	С	B,S	Describes the true vertical depth (TVD) of the top end of the heat-flow determination interval relative to the land surface/seafloor.
C05	Heat-flow interval bottom	q_bottom	m	Float (2 decimal places)	М	С	В	Describes the true vertical depth (TVD) of the bottom end of the heat-flow determination interval relative to the land surface.
C06	Penetration depth	probe_penetration	m	Float (2 decimal places)	М	С	S	Depth of penetration of marine probe into the sediment.
C07	Primary publication reference	publication_referen ce	-	Char (255)	М	С	B,S	References of primary publication related to the respective heat-flow entry.
C08	Primary data reference	data_reference	-	Char (255)	М	С	B,S	References of primary data publication related to the respective heat-flow entry.
C09	Relevant child	relevant_child	-	Boolea n field	М	С	B,S	Specifies whether the child entry is used for computation of representative location heatflow values at the parent level or not.

C10	General comments child level	c_comment	-	Char (255)	R	Р	B,S	Comments and further specifications to the individual reported heat-flow determination.
C11	Flag in-situ thermal properties	corr_IS_flag	-	Char (255)	R	С	B,S	Specifies whether the in-situ pressure and temperature conditions were considered to the reported thermal conductivity value or not.
C12	Flag temperature corrections (instrumental correction)	corr_T_flag	-	Char (255)	R	С	B,S	Specifies if instrumental corrections to the measured temperature data were required and performed.
C13	Flag sedimentation effect (temperature correction)	corr_S_flag	-	Char (255)	R	С	B,S	Specifies if sedimentation/subsidence effects with respect to the reported heat-flow value were present and if corrections were performed.
C14	Flag erosion effect (heatflow correction)	corr_E_flag	-	Char (255)	R	С	B,S	Specifies if erosion effects with respect to the reported heat-flow value were present and if corrections were performed.
C15	Flag topographic effect (heat- flow correction)	corr_TOPO_flag	-	Char (255)	R	С	B,S	Specifies if topographic effects with respect to the reported heat-flow value were present and if corrections were performed.
C16	Flag paleoclimatic effect (heat- flow correction)	corr_PAL_flag	-	Char (255)	R	С	B,S	Specifies if paleoclimatic effects with respect to the reported heat-flow value were present and if corrections were performed.
C17	Flag transient climatic effect (heat-flow correction)	corr_PAL_flag	-	Char (255)	R	С	B,S	Specifies if climatic conditions (glaciation, postindustrial warming, etc.) with respect to the reported heat-flow value were present and if corrections were performed.
C18	Flag convection processes (heat-flow correction)	corr_CONV_flag	-	Char (255)	R	С	B,S	Specifies if convection effects with respect to the reported heat-flow value were present and if corrections were performed.
C19	Flag heat refraction effect (heat- flow correction)	corr_HR_flag	-	Char (255)	R	С	В,Ѕ	Specifies if refraction effects, e.g., due to significant local conductivity contrasts, with respect to the reported heat-flow value were present and if corrections were performed.
C20	Platform, Vessel, Expedition	expedition	-	Char (255)	R	С	S	Specification of the expedition, cruise, platform or research vessel where the marine heat flow survey was conducted.
C21	Probe type	probe_type	-	Char (255)	R	С	S	Type of heat-flow probe used for measurement.
C22	Probe length	probe_length	m	Float (2 deimal places)	R	С	S	Length of heat-flow probe.
C23	Probe tilt	probe_tilt	deg	Float (1 decimal place)	R	С	S	Tilt of the marine heat-flow probe.

C24	Bottom-water temperature	water_temperature	°C	Float (2 decimal places)	0	Р	S	Seafloor temperature where heat-flow measurements were taken. e.g. PT 100 or Mudline temperature for ocean drilling data.
C25	Lithology	geo_lithology	-	Char (255)	0	С	B,S	Dominant rock type/lithology within the interval of heat-flow determination.
C26	Stratigraphic age	geo_stratigraphy	-	Char (255)	0	С	B,S	Stratigraphic age (series/epoch or stage/age) of the depth range involved in the reported heatflow determination.
C27	Calculated or inferred temperature gradient	T_grad_mean	K/km	Float (2 decimal places)	R	С	B,S	Mean temperature gradient measured for theheat-flow determination interval.
C28	Temperature gradient uncertainty	T_grad_uncertainty	K/km	Float (2 decimal places)	R	С	B,S	Uncertainty standard deviation of mean measured temperature gradient [T_grad_mean] as estimated by an error propagation from the uncertainty in the top and bottom temperature determinations.
C29	Mean temperature gradient corrected	T_grad_mean_cor	K/km	Float (2 decimal places)	0	С	B,S	Mean temperature gradient corrected for borehole (drilling/mud circulation) and environmental effects (terrain effects/topography, sedimentation, erosion, magmatic intrusions, paleoclimate, etc.). Name the correction method in the corresponding item.
C30	Corrected temperature gradient uncertainty	T_grad_uncertainty _cor	K/km	Float (2 decimal places)	0	С	B,S	Uncertainty standard deviation of mean corrected temperature gradient [T_grad_mean] as estimated by error propagation from the uncertainty of the measured gradient and the applied correction approaches.
C31	Temperature method (top)	T_method_top	-	Char (255)	М	С	В	Method used for temperature determination at the top of the heat-flow determination interval.
C32	Temperature method (bottom)	T_method_bottom	-	Char (255)	М	С	В	Method used for temperature determination at the bottom of the heat-flow determination interval.
C33	Shut-in time (top)	T_shutin_top	hours	Integer (5)	R	С	В	Time of measurement at the interval top in relation to the end Values measuredduring the drilling are equal to zero.
C34	Shut-in time (bottom)	T_shutin_bottom	hours	Integer (5)	R	С	В	Time of measurement at the interval bottom in relation to the end Values measuredduring the drilling are equal to zero.

C35	Temperature correction method (top)	T_corr_top	-	Char (255)	R	С	В	Applicable only if gradient correction for borehole effects is reported. Approach applied to correct the temperature measurement for drilling perturbations at the top of the interval used for heat-flow determination.
C36	Temperature correction method (bottom)	T_corr_bottom	-	Char (255)	R	С	В	Applicable only if gradient correction for borehole effects is reported. Approach applied to correct the temperature measurement for drilling perturbations at the bottom of the interval used for heat-flow determination.
C37	Number of temperature recordings	T_number	-	Integer (6)	R	С	B <i>,</i> S	Number of discrete temperature points (e.g. number of used BHT values, log values or thermistors used in probe sensing) confirming the mean temperature gradient [T_grad_mean_meas]. Not the repetition of one measurement at a certain depth.
C38	Date of acquisition	q_date	-	POSIX date (YYYYM M)	М	С	B,S	The entry gives the year of the acquisition of the temperature data (which may differ from the year of publication). If the month is unknown use 01, i.e. for the year 2005 use 2005-01. For nonunique time values, define a range in the format: 'YYYY-MM; YYYY-MM'
C39	Mean thermal conductivity	tc_mean	W/(mK)	Float (2 decimal place)	М	С	B,S	Mean conductivity in vertical direction representative for the interval of heat-flow determination. The value should reflect the true in-situ conditions for the corresponding heat flow interval.
C40	Thermal conductivity uncertainty	tc_uncertainty	W/(mK)	Float (2 decimal place)	R	С	B,S	Uncertainty of mean thermal conductivity [tc_mean] given as one-sigma standard deviation.
C41	Thermal conductivity source	tc_source	-	Char (255)	М	С	B,S	Nature of the samples upon which thermal conductivity was determined [tc_mean].
C42	Thermal conductivity location	tc_location	-	Char (255)	М	С	B,S	location of the samples upon which thermal conductivity was determined [tc_mean].
C43	Thermal conductivity method	tc_method	-	Char (255)	R	С	B,S	Method used for thermal- conductivity determination for [tc_mean].
C44	Thermal conductivity saturation	tc_saturation	-	Char (255)	М	С	B,S	Saturation state of the studied rock interval studied for thermal conductivity [tc_mean].
C45	Thermal conductivity pT conditions	tc_pT_conditions	-	Char (255)	М	С	B,S	Qualified conditions of pressure and temperature under which the mean thermal conductivity [tc_mean] used for the heat-flow computation was determined.

C46	Thermal conductivity pT assumed function	tc_pT_function	-	Char (255)	R	С	B,S	Technique or approach used to correct the measured thermal conductivity towards in-situ pressure (p) and/or temperature (T) conditions.
C47	Thermal conductivity number	tc_number	-	Integer (4)	R	C	B,S	Number of discrete conductivity determinations used to determine the mean thermal conductivity [tc_mean], e.g. number of rock samples with a conductivity value used, or number of thermistors used by probe sensing techniques. Not the repetition of one measurement on one rock sample or one thermistor.
C48	Thermal conductivity averaging methodology	tc_strategy	-	Char (255)	R	С	B,S	Strategy that was employed to estimate the thermal conductivity [tc_mean] over the vertical interval of heat-flow determination.
C49	IGSN	Ref_IGSN	-	Char (255)	0	С	B,S	International Generic Sample Numbers (IGSN, semicolon separated) for rock samples used for laboratory measurements of thermal conductivity in the heat flow calculation.

Abbreviations – Level: Parent level (P), child level (C); Scheme: Applicable for marine borehole data (B), applicable for marine probe sensing data (S), relevant for all (BS); Classification – Class: Mandatory (M), Recommended (R), Optional (O);

5. Database

The database is constructed using published heat flow data available from Turkey region. It also serves the purpose of identifying errors in prior databases and uncovering data that may have been overlooked or forgotten.

6. References

Fuchs, S., Norden, B., Neumann, F., Kaul, N., Tanaka, A., Kukkonen, I.T., Pascal, C., Christiansen, R., Gola, G., Šafanda, J. and Espinoza-Ojeda, O.M., et al., 2023. Quality-assurance of heat-flow data: The new structure and evaluation scheme of the IHFC Global Heat Flow Database. *Tectonophysics*, *863*, p.229976. https://doi.org/10.1016/j.tecto.2023.229976.

7. Database References

Balkan-Pazvantoglu_etal_2021 Pazvantoğlu, E., Erkan, K., ŞalK, M., Akkoyunlu, B. O., & Tayanc, M.

(2021). Surface heat flow in Western Anatolia (Turkey) and

implications to the thermal structureof the Gediz Graben. Turkish

Journal of Earth Sciences, 30(9). 991-1007.

https://doi.org/10.3906/yer-2105-28

Balkan-Pazvantoglu_Erkan_2019 Balkan-Pazvantoğlu, E., & Erkan, K. (2019). Temperature-depth

curves and heat flow in central part of Anatolia, Turkey.

Tectonophysics, 757, 24-34.

https://doi.org/10.1016/j.tecto.2019.02.019

Erkan_2015

Erkan, K. (2015). Geothermal investigations in western Anatolia using equilibrium temperatures from shallow boreholes. Solid Earth, 6(1), 103-113. https://doi.org/10.5194/se-6-103-2015

Erkan Balkan-Pazvantoglu 2023

Erkan, K., & Balkan-Pazvantoğlu, E. (2023). Distribution of surface heat flow and effects on the subsurface temperatures in the northern part of Thrace Basin, NW Turkey. Geothermal Energy, 11(1), 1-16. https://doi.org/10.1186/s40517-023-00253-7

Ilkisik etal 1996

İlkışık, O. M, Yalçın M. N., Sari, C., Okay, N., Bayrak, M. et al. (1996). Ege bölgesi'nde ısı akısı araştırmaları. TÜBİTAK Proje No: YDABÇAG-233/G, Ankara (in Turkish).

Ilkisik_etal_1997

İlkışık O. M., Yenigün H. M., Sardar S., Oguz, S., Yalçın M.N., et al. (1997). Ege bölgesi'nde jeotermik arastirmalar. TÜBİTAK Proje No: YDABÇAG-430/G, Ankara (in Turkish).

Pfister 1998

Pfister, M., Rybach, L., & Simsek, S. (1998). Geothermal reconnaissance of the Marmara Sea region (NW Turkey): surface heat flow density in an area of active continental extension. Tectonophysics, 291(1-4), 77-89. https://doi.org/10.1016/s0040-1951(98)00032-8

Sayin Gurer 2021

Sayın, N., & Gürer, A. (2021). An approach for heat flow determination in the absence of geothermal gradient measurements: west Anatolia example. Arabian Journal of Geosciences, 14, 1-10. https://doi.org/10.1007/s12517-021-06753-9

Tezcan_Turgay_1991

Tezcan, A. K. & Turgay, M. I. (1991). Heat flow and temperature distributions in Turkey, in Cermak, V., Haenal, R., and Zui, V., Eds., Geothermal Atlas of Europe: Herman HAACK Verlag, Gotha, Germany.